




## Damping Optimization for a 3D Printed Thermoplastic Lunar Rover Structure

<u>Queen's University</u> Adam McKenzie II Yong Kim Canadian Space Agency Marie-Josée Potvin

Anton Sura





llyongkim.ca

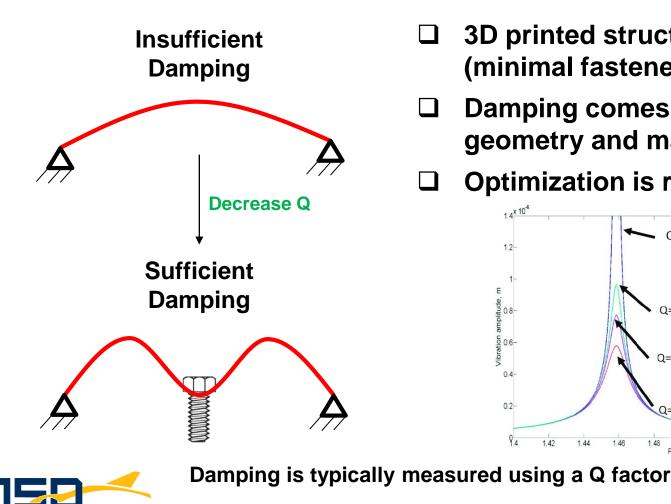
November 2, 2022



### PEEKbot Project Background

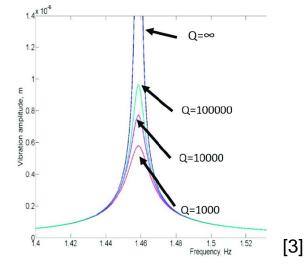









### **PEEKbot Project** Damping



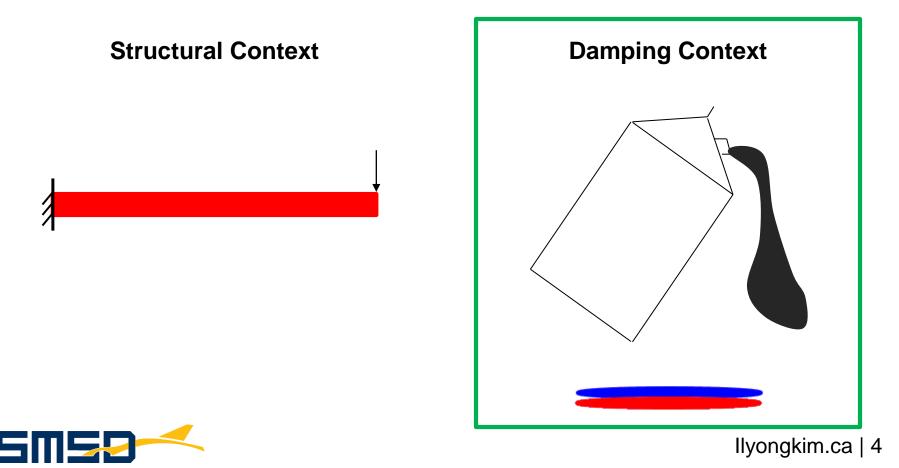

### **Typical Applications**



### **PEEKbot**

- **3D printed structure** (minimal fasteners)
- Damping comes from geometry and material
  - **Optimization is required**



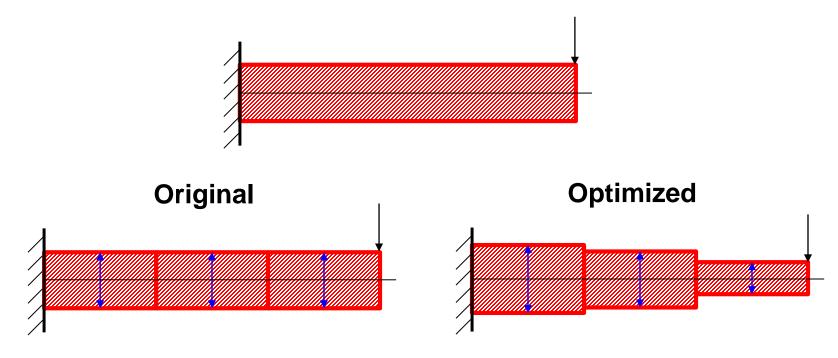

Ilyongkim.ca | 3







- PLA (poly lactic acid) will be used in this research
- PLA is a stiff viscoelastic material





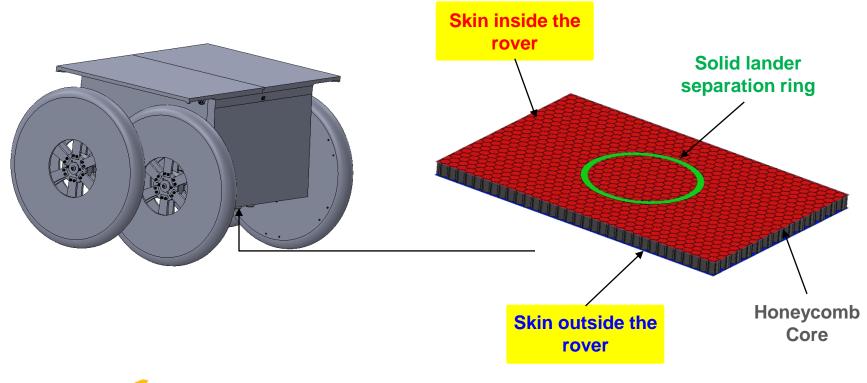





- Changing the local skin thickness
- Original skin thickness 1 mm
- Allow the each element on the skin to choose a thickness between 0.5 mm to 1.5 mm








### Damping Optimization Setup

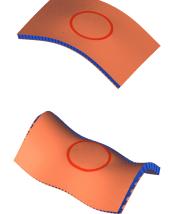


#### **Only the skin on the base panel of the rover is optimized**

- Minimize computational expenses
- Most of the damping is expected to come from the base panel
- Altair's OptiStruct is used for analysis







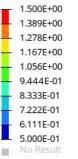

# **Damping Results**



- □ The base panel model is the most extreme case
- □ Modes under 500 Hz optimized
  - A frequency range of up to 2000 Hz will be needed in the future
- ☐ The optimized design has 9.3% less mass than the baseline

|      | Q Factor         |                   |              |  |  |  |  |  |  |  |
|------|------------------|-------------------|--------------|--|--|--|--|--|--|--|
| Mode | Baseline         | Optimized         | % Difference |  |  |  |  |  |  |  |
| 1    | 37.1<br>(122 Hz) | 25.35<br>(133 Hz) | 32.8%        |  |  |  |  |  |  |  |
| 2    | 46.5<br>(316 Hz) | 46.3<br>(363 Hz)  | 0.6%         |  |  |  |  |  |  |  |

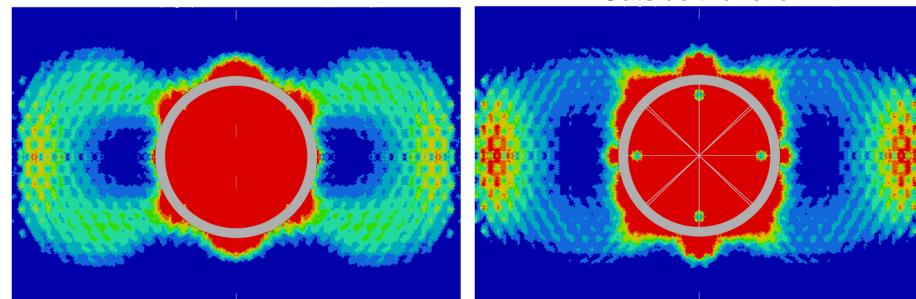







## **Thickness Results**




#### Skin Thickness (mm)

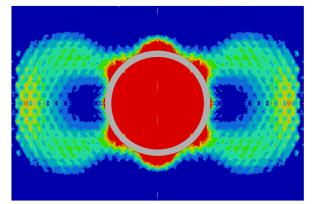




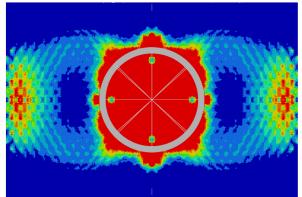
#### Inside the rover

Outside the rover







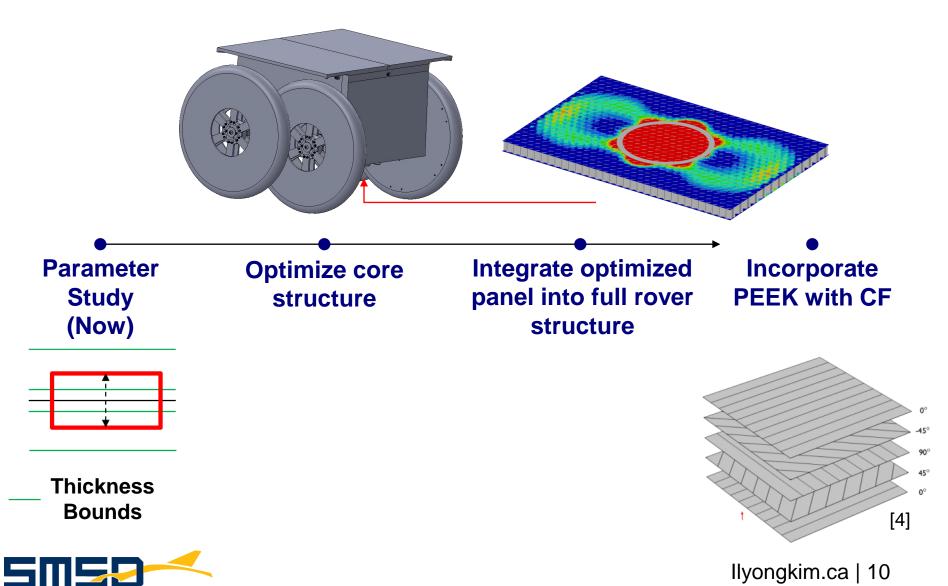



#### Inside the rover



#### Outside the rover




- The first mode was successfully damped
- The skin thickness may not add damping to all modes
- □ Total mass was decreased by ~10%
- □ Further optimizations are required





# **Future Work**







## References



[1] SpaceX [@spacex], "More Falcon 9 launch and landing photos → http://flickr.com/spacex https://t.co/FIKkAH1EwU," Twitter, Nov. 22, 2020. https://twitter.com/spacex/status/1330362669837082624 (accessed Oct. 21, 2022).

[2] "There's Water on the Moon?," *Moon: NASA Science*. https://moon.nasa.gov/news/155/theres-wateron-the-moon (accessed Oct. 21, 2022).

[3] A. Ramanan, Y. Teoh, W. Ma, and W. Ye, "Characterization of a Laterally Oscillating Microresonator Operating in the Nonlinear Region," *Micromachines*, vol. 7, p. 132, Aug. 2016, doi: 10.3390/mi7080132.

[4] "Stacking Sequence."
https://doc.comsol.com/5.5/doc/com.comsol.help.compmat/compmat\_ug\_modeling.3.09.html (accessed Oct. 11, 2022).

[5] S. C. Woody and S. T. Smith, "Damping of a thin-walled honeycomb structure using energy absorbing foam," *J. Sound Vib.*, vol. 291, no. 1, pp. 491–502, 2006, doi: https://doi.org/10.1016/j.jsv.2005.06.001.

[6] P. Aumjaud, C. W. Smith, and K. E. Evans, "A novel viscoelastic damping treatment for honeycomb sandwich structures," *Compos. Struct.*, vol. 119, pp. 322–332, 2015, doi: https://doi.org/10.1016/j.compstruct.2014.09.005.









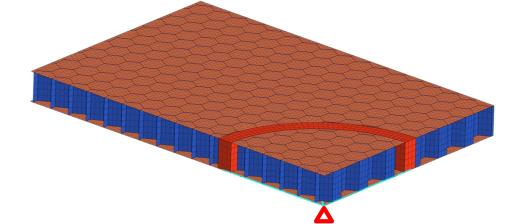
# **Thank You!**





### **Preliminary Optimization**




Ilyongkim.ca | 13

Minimize: $Q_{NewMethod}(\rho)$ Subject to: $MassFraction \le 0.8$  $0.5 \le \rho_i \le 1.5$ 

where  $\rho$  is the thickness of element *i*;

Mass fraction is the fraction of mass in the design space only

Acceleration magnitudes applied from the Falcon 9 manual



The lander attachment points are all attached to a centre node using RBE3 elements where the accelerations and fixed boundary constraint are applied









#### □ Modal effective mass shows how important each mode is

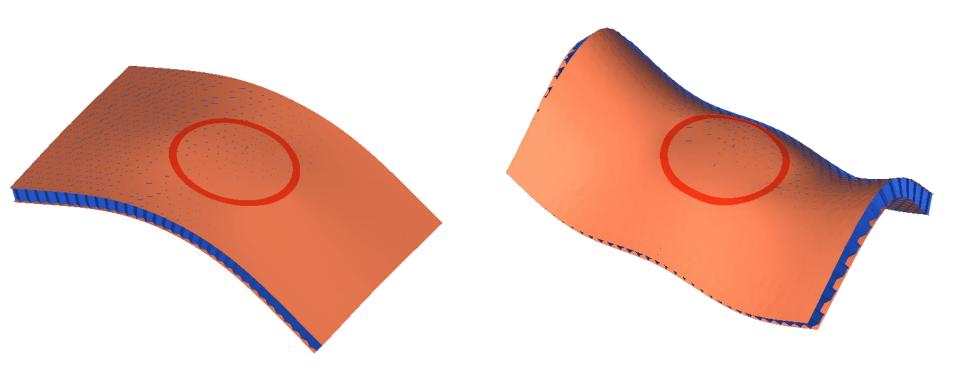
- Gives localized modes a small modal effective mass
- A sum of 95% mass in a DOF means all of the important modes have been found
  - Only the modes under 2000 Hz are required to be damped

| Mode # | Freq [Hz] | X-Tran | Y-Tran | Z-Tran | X-Rot | Y-Rot | Z-Rot | MAX | Mode | Freq [Hz] | X-TRAN | Y-TRAN | Z-TRAN | X-ROT | Y-ROT | Z-ROT | Max |
|--------|-----------|--------|--------|--------|-------|-------|-------|-----|------|-----------|--------|--------|--------|-------|-------|-------|-----|
| 1      | 122       | 0%     | 42%    | 0%     | 39%   | 0%    | 88%   | 88% | 1    | 133       | 0%     | 36%    | 0%     | 32%   | 0%    | 85%   | 85% |
| 2      | 316       | 0%     | 7%     | 0%     | 41%   | 0%    | 1%    | 41% | 2    | 362.5     | 0%     | 5%     | 0%     | 38%   | 0%    | 1%    | 38% |
| 3      | 492       | 0%     | 9%     | 0%     | 4%    | 0%    | 2%    | 9%  | 3    | 550.8     | 0%     | 9%     | 0%     | 7%    | 0%    | 2%    | 9%  |
| 4      | 760.3     | 0%     | 1%     | 0%     | 0%    | 0%    | 2%    | 2%  | 4    | 763.7     | 1%     | 0%     | 0%     | 1%    | 0%    | 2%    | 2%  |
| 5      | 1051      | 21%    | 0%     | 2%     | 0%    | 14%   | 0%    | 21% | 5    | 1019      | 28%    | 1%     | 3%     | 0%    | 20%   | 0%    | 28% |
| 6      | 1077      | 34%    | 1%     | 6%     | 1%    | 29%   | 0%    | 34% | 6    | 1049      | 20%    | 0%     | 4%     | 0%    | 20%   | 0%    | 20% |
| 7      | 1171      | 1%     | 16%    | 1%     | 3%    | 1%    | 2%    | 16% | 7    | 1103      | 0%     | 21%    | 0%     | 5%    | 0%    | 2%    | 21% |
| 8      | 1323      | 0%     | 0%     | 0%     | 1%    | 0%    | 0%    | 1%  | 8    | 1310      | 0%     | 0%     | 0%     | 1%    | 0%    | 0%    | 1%  |
| 9      | 1401      | 3%     | 0%     | 0%     | 0%    | 12%   | 0%    | 12% | 9    | 1382      | 2%     | 0%     | 0%     | 0%    | 6%    | 0%    | 6%  |
| 10     | 1503      | 0%     | 1%     | 0%     | 0%    | 0%    | 1%    | 1%  | 10   | 1493      | 0%     | 1%     | 0%     | 0%    | 0%    | 1%    | 1%  |
| 11     | 1676      | 1%     | 2%     | 3%     | 2%    | 1%    | 0%    | 3%  | 11   | 1674      | 0%     | 3%     | 0%     | 2%    | 0%    | 0%    | 3%  |
| 12     | 1712      | 8%     | 0%     | 39%    | 0%    | 14%   | 0%    | 39% | 12   | 1726      | 9%     | 0%     | 29%    | 0%    | 18%   | 0%    | 29% |
| 13     | 1938      | 0%     | 1%     | 2%     | 0%    | 0%    | 0%    | 2%  | 13   | 1967      | 0%     | 0%     | 2%     | 0%    | 0%    | 1%    | 2%  |
| 14     | 2048      | 0%     | 3%     | 4%     | 3%    | 0%    | 0%    | 4%  | 14   | 2050      | 0%     | 5%     | 2%     | 4%    | 0%    | 0%    | 5%  |
| SI     | UM        | 68%    | 84%    | 56%    | 94%   | 72%   | 96%   |     | S    | UM        | 60%    | 82%    | 39%    | 92%   | 66%   | 95%   |     |

Optimized

Ilyongkim.ca | 14






### **Mode Shapes**

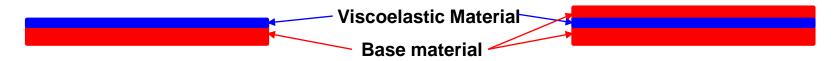


Mode 1

Mode 2

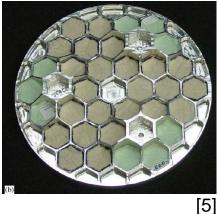




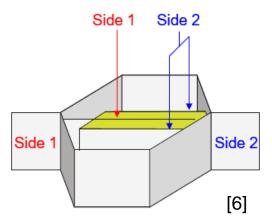








#### **Unconstrained Layer Damping**

**Constrained Layer Damping** 




### ALL METHODS ADD MASS

#### **Void Filler**



**Double Shear Lap Joint** 



llyongkim.ca | 16