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Accurate prediction of linear amplification of disturbances in hypersonic boundary layers
is computationally challenging. While direct numerical simulations (DNS) and global analysis
can be used to compute optimal (worst-case) disturbances and forced responses, their large
computational expense render these tools less practical for large design parameter spaces. At
the same time, parabolized stability equations can be unreliable for problems involving multi-
modal and non-modal interactions. To bridge this gap, we apply an approximate fast marching
technique, the One-Way Navier-Stokes (OWNS) Equations, in iterative fashion to solve for op-
timal disturbances. OWNS approximates a rigorous parabolization of the equations of motion
by removing disturbances with upstream group velocity using a higher-order recursive filter.
UsingOWNS,we aim to characterize disturbances of flat-plate hypersonic boundary layers over
a range of Mach numbers, and find optimal disturbances under different cost functions that
define corresponding receptivity problems. The calculation of optimal disturbances reveals
multi-modal transition scenarios depending on the spatial support, frequency, and physical
nature of the external disturbances.

I. Nomenclature

(b, [, Z) = Body-fitted streamwise, wall-normal, and spanwise coordinates
(G, H, I) = Global Cartesian coordinates
" = Mach number
) = Temperature
a = Kinematic viscosity
? = Pressure
0 = Speed of sound
d = Density
: = Thermal conductivity
` = Dynamic viscosity
u = Velocity vector composed of the streamwise D, wall-normal E, and spanwise F components
V = Spanwise wavenumber
^ = Bulk viscosity
W = Specific heat ratio
' = Gas constant
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	 = Gain from optimization algorithms

II. Introduction
Developing an in-depth understanding of hypersonic laminar-to-turbulent transition will help formulate methods to

control aerodynamic and thermal loads. For example, due to the difficulty of predicting the onset of turbulence, the
take-off mass of the US National Aerospace Plane (NASP/X-30) was affected by a factor of two or more [1]. Thus,
to design an optimal vehicle, it is of utmost importance to understand the state of the aerodynamic boundary layer
throughout the flight trajectory.

For idealized flow conditions, i.e. slender geometries experiencing minor pressure gradients and low freestream
perturbations, at subsonic and low supersonic speeds, natural transition is due to the first mode, which is characterized by
the amplification of Tollmien-Schlichting (T-S) waves [2]. In contrast, at hypersonic speeds (M > 4), natural transition
is far more complex due to the presence and interaction of multiple discrete modes including the first, second, and
higher-order Mack modes [3, 4]. These modes are characterized by convectively-amplified streamwise-propagating
acoustic disturbances usually in the ultrasonic range, which approximately behave as acoustic waves reflecting between
the solid wall and the relative sonic line [2]. The second Mack mode is usually the dominant instability in zero-pressure-
gradient boundary layers at hypersonic speeds with insulated walls. Additionally, it has been shown that the first
mode along with other instabilities, such as the concave-wall Görtler instability [5], the supersonic mode [6], and
three-dimensional crossflow instability [7, 8] interact with and/or modify the acoustic properties of the second mode
(e.g. Görtler-modified azimuthal Mack-modes [9]). Thus, predictive tools which are capable of efficiently tracking these
multi-modal instabilities are critical for engineering design.

Current tools to predict boundary-layer transition include direct numerical simulations (DNS) and its linear
counterparts such as global stability analysis, linear stability theory (LST), and parabolized stability equations (PSE).
Although globalmethods aremost accurate, they are computationally intensive since they require full spatial discretization,
especially with complex geometries. LST is more computationally efficient but typically employs the parallel-flow
assumption that introduces error as seen in [10]. PSE may seem to be the optimal method between DNS and LST,
but there are intrinsic disadvantages. Instead of formally deriving a one-way operator, PSE achieves a stable spatial
march by numerically damping upstream-propagating waves, but this damping gives rise to unpredictable (uncontrolled)
distortion of the downstream waves that one aims to resolve [11]. This has profound negative consequence for non-modal
instabilities and for flows with more rapid streamwise evolution [11].

In traditional stability analyses, we analyze how incident disturbances evolve into flow instabilities. However, for
design purposes, the inverse problem is more useful: what are the worst-case disturbances that lead to the fastest
transition from laminar to turbulent flows. Recently, a new technique referred to as resolvent or input/output analysis
has been introduced that combines the linear receptivity and instability problem via optimization techniques, such
as singular value decomposition (SVD), to determine inflow disturbances that lead to maximal amplification [12].
These global analyses have been historically tractable for simple geometries at low-speeds [13], but their extension to
high-speed flows have gained recent attention [14, 15]. While promising results have been shown, their application to
practical, in-flight geometries would involve complex algorithms and large-scale computing.

We alleviate the aforementioned deficiencies by introducing a novel streamwise-marching technique, the One-Way
Navier-Stokes (OWNS) equations. Originally developed for hyperbolic equations (e.g. Euler), OWNS employs a
rigorous parabolization technique to generate well-posed, one-way approximations [16]. Efficient (fast) approximations
of the resulting operator can then be made using recursive filters that were originally developed for non-reflecting
boundary conditions (NRBC). Aside from the parabolization itself, and unlike PSE, the numerics are convergent and
not restricted to a dominant wavelength. A schematic comparing the global, PSE, and OWNS method on a flat-plate
boundary layer shown is shown in Fig. 1. We build on an earlier attempt [17, 18] to extend the OWNS algorithm
to perform the inverse problem of determining the worst-case disturbances that give rise to the maximum achievable
amplification (in a suitably defined metric). Unlike approaches that invoke the SVD of the global operator [12],

2



the OWNS approach �nds these solutions via an iterative, space-marching technique that appreciably reduces the
computational burden without sacri�cing accuracy.

Fig. 1 Global versus marching methods PSE and OWNS on a �at-plate boundary layer.

In the present paper, we begin with the compressible Navier-Stokes equations and the resulting one-way equations in
Sec. III. For brevity, we omit algorithmic details of optimal OWNS but the original formulation can be found in [18]. We
validate optimal OWNS against global resolvent analyses from [19] and using our latest code CSTAT (Caltech Stability
and Transition Analysis Toolkit) for a Mach 4.5 adiabatic �at-plate boundary layer in Sec. IV. CSTAT can perform
a variety of stability analyses from subsonic to hypersonic regimes for jets and boundary layers in non-orthogonal,
body-�tted curvilinear coordinates with user-de�ned �uid properties. We demonstrate its capability by applying optimal
OWNS on a Mach 6 38.1% scale model of the HIFiRE-5 elliptic cone [20] in Sec. V.
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III. Methodology

A. Linearized equations of motion
The non-dimensional compressible Navier-Stokes equations for an ideal gas are
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We follow the two-step transformation from the Cartesian coordinate system to the physical non-orthogonal curvilinear
coordinate system outlined in [21] and linearize all equations about a time-independent base �ow such that

@¹b– [– Z– Cº = @¹b– [– Zº ¸ @0¹b– [– Z– Cº– (2)

where@= »d– D– E– F– )¼) is the state vector. Due to algebraic complexity, we have automated this transformation using
the Mathematica software and present the general matrix form of the resulting forced linear equation
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where 5? is a general primitive forcing term. After discretizing in the[ andZ directions (if performing fully 3D
analysis, otherwise we invoke spanwise periodicity and consider one wavenumber at a time), we map the resulting
semi-discretized equation into characteristic space via the transformation

q¹b– [– Z– Cº = ) q ¹b– [– Zº@0¹b– [– Z– Cº– e� b –8EB= ) q � � 1 � b –8EB) � 1
q – (4)

where the rows of) q are the left eigenvectors of� � 1 � b –8EB, yielding

3q
3b

� e"q = < 2– q¹b = b0– [– Zº = q0• (5)

Eq. 5 is still exact, but cannot be solved as an initial value problem (IVP) inb because" has eigenvalues of both signs.
In PSE, this equation isregularizedto damp the upstream modes, whereas in OWNS the equation isparabolizedby
�ltering out the modes with upstream group velocity [16, 22].

IV. Mach 4.5 Adiabatic Flat-Plate Validation Results

A. Optimal gain curves
The normalized gain curves computed from OWNS are plotted against singular values from the global resolvent

analyses of [19] in Fig. 2. Note that the absolute value of the gains has no physical meaning but thetrendobserved
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in thel � Vspace allows resonance and pseudo-resonance of the �ow response to be analyzed for a given harmonic
forcing [19]. For all three instability types, we observe excellent agreement of the optimall and/orV, but with much
reduced computational e�ort in the OWNS formulation.

Fig. 2 Normalized gain curves for streaks (left), second mode (middle), and oblique �rst mode (right) between
OWNS and [19] for Mach 4.5 adiabatic �at-plate boundary layer.

B. Optimal forcing and response
In this section, we compare the optimal forcing and responses between OWNS and global resolvent calculated by

CSTAT using the same conditions from [19]. Table 1 summarizes the frequency and/or spanwise wavenumber used
for each type of instability (corresponds to the optimal conditions from [19]). Overall, Figs. 3 and 4 show agreement
between the OWNS and global results. Note that since only the real component is plotted, the magnitude and/or polarity
di�erences is due to the phase shift between the two methods (this phase is arbitrary). Furthermore, the streamwise
domain for global resolvent is bounded by inlet and outlet sponges to model open boundaries. The presence of the inlet
sponge forces the forcing to e�ectively begin further downstream, yielding a delayed response. This demonstrates an
additional advantage of using OWNS to compute the optimal perturbations and responses.

Table 1 Optimal L and/or #y used for streaks, oblique �rst mode, and second mode from [19].

Vy [1/m] �

Streaks 2•0534� 104 1•7832� 10� 7

First mode 1•1200� 104 2•8531� 10� 5

Second mode 0 2•2290� 10� 4

For streaks, the optimal forcing consists of streamwise counter-rotating vortices that lift the streamwise base �ow
momentum. This is referred to as thelift-up mechanism and yields a response that contains primarily streaks of highly
ampli�ed streamwise velocity stretching in the streamwise direction. For the oblique �rst mode, the optimal forcing �eld
contains upstream-titled structures that is emblematic of the non-modal Orr mechanism. This generates an oblique wave
response with relatively large streamwise velocity. Lastly, for the second mode, we see the classical trapped acoustic
waves between the wall and relative sonic line as well as thermodynamic ampli�cation near the generalized in�ection
point in the response �elds (two coexisting mechanisms). For such a response, we require the optimal forcing to be
concentrated near the generalized in�ection point.

The contour plots of the suboptimal forcing and responses between OWNS and global resolvent are shown in Figs.
5 and 6, respectively. We again observe agreement between the two methods, where we see an increased number of
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wavepackets in the forcing and responses due to the orthogonality between optimal and suboptimal modes.

Fig. 3 Comparison of optimal forcing �elds for streaks (top), oblique �rst mode (middle), and second mode
(bottom) for adiabatic Mach 4.5 �at-plate boundary layer between OWNS (left) and global resolvent (right).

Fig. 4 Comparison of optimal response �elds for streaks (top), oblique �rst mode (middle), and second mode
(bottom) for adiabatic Mach 4.5 �at-plate boundary layer between OWNS (left) and global resolvent (right).
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